Disorder	Gene	Mutations	Notes	Source
Ashkenazi Jewish				
Panel: Bloom				
Syndrome, Canavan				
Disease, Familial				
Dysautonomia,				
Fanconi Anemia				
Type C, Gaucher	BLM ASPA			
Disease,	IKBKAP			
Mucolipidosis Type	FANCC GBA		AJP Control™ (Ashkenazi	
IV, Niemann-Pick	MCOLN1	31 mutations	Jewish Panel) for the	
Disease, Tay Sachs	SMPD1	associated with	Luminex (TM Bioscience	Molecular
Disease	HEXA	disorders	Tag-It™) platform.	Controls
			Mutations, 3	
			polymorphisms, and	Maine
		38 CFTR mutations	5/7/9T variants. (in	Molecular
		including ACMG 23	blood-like matrix) FDA	Quality
cystic fibrosis	CFTR	panel	cleared	Controls, Inc.
cystic fibrosis	CLIK	parier	Also contains variants:	Controls, mc.
			1506V, 1507V, F508C,	Maine
		23 CFTR mutations	5/7/9/11T and I148T. (in	
			•	
cyctic fibrasic	CFTR	recommended by the ACMG.	blood-like matrix) FDA cleared	Quality Controls, Inc.
cystic fibrosis	CFIK	ACIVIG.	cleared	Controls, Inc.
			Also contains variants:	Maine
		79 CFTR mutations	I506V, I507V, F508C,	Molecular
		including ACMG 23	5/7/9/11T and I148T. (in	Quality
cystic fibrosis	CFTR	panel	blood-like matrix)	Controls, Inc.
		32 mutations in the		
		Abbott/Celera Cystic		
		Fibrosis Genotyping		
		Assay. Not available		
cystic fibrosis	CFTR	in Canada or EU		Seracare
			When used in	
			conjunction with	
			Accurun 676, covers all	
		47 mutations- Not	81 mutations in the	
		available in US or	Luminex xTag™ CFTR IVD	
cystic fibrosis	CFTR	Canada	Assay	Seracare

cystic fibrosis	CFTR	34 mutations. Not available for sale in Canada or EU	When used in conjunction with Accurun 644, covers all 81 mutations in the Luminex xTag™ CFTR 70+6 Assay	Seracare
Homochromatosis		H63D C383V	Control to monitor extraction, amplification and detection. Mutations are heterozygous, homozygous. Wild type alleles are also included.	Maine Molecular Quality
Hemochromatosis	HFE	H63D, C282Y	DNA in blood-like matrix.	Controls, Inc.
Hemochromatosis	HFE	H63D, S65C, C282Y	Control to monitor extraction, amplification and detection. Mutations are heterozygous, homozygous. Wild type alleles are also included. DNA in blood-like matrix.	Maine Molecular Quality Controls, Inc.
Hemochromatosis	HFE	Wild Type	Control to monitor extraction, amplification and detection. Mutations are heterozygous, homozygous. Wild type alleles are also included. DNA in blood-like matrix.	Maine Molecular Quality Controls, Inc.
Heteroplasmic Mitochondrial DNA Mutation Detection Standard	mtDNA	human mitochondrial DNA mixtures which simulate different levels of heteroplasmy.	mtDNA mixtures (mass % polymorphic levels are 1 %, 2.5 %, 5 %, 10 %, 20 %, 30 %, 40 % and 50 %)	National Institute of Standards and Technology

	1	T	ī	
Huntington	НТТ	CAG repeat lengths of 6 samples: 15/29, 17/36, 15/40, 35/45/39/50, 17/75	6 genomic DNA samples, 2 alleles per sample. Repeat lengths classifications: normal, intermediate, reduce penetrance, full penetrance	National Institute of Standards and Technology
				, , ,
Mitochondrial DNA Sequencing		Human cell line DNA- sequence of mtDNA is well characterized	Contains DNA extracted from two cell lines plus cloned DNA from a region that is difficult to sequence.	National Institute of Standards and Technology
Pharmacogenetics	CYP2C9, CYP4Fs, VKORC1	CYP2C9: *2, *., *5, *6, *11, *14, *16. VKORC1 -1639G>A, CYP4F2 1347G>A	analytical performance of the extraction, amplification and detection steps performed according to the eSensor® Warfarin Sensitivity Plus Test on the eSensor® XT-8	Maine Molecular Quality Controls, Inc.
Pharmacogenetics	CYP2C19	CYP2C19: *2, *3, *4, *5, *6, *7,, *8, *9, *10, *17	control to monitor analytical performance of the extraction, amplification and detection steps of Cytochrome P450 2C19 (CYP2C19) mutations .	Maine Molecular Quality Controls, Inc.
Pharmacogenetics	CYP2C9, VKORC1	CYP2C9: *2, *3, *4, *5, *6. VKORC1: -1639G>A, 85G>T, 121G>T, 134T>C, 172A>G, 1331G>A, 3487T>G	Synthetic material, mixture of mutations in CYP2C9 and VKORC1 in one tube.	Molecular Controls

			T	
			Synthetic reference	
			nucleic acids comprising	
			7 mutations/variants in	
		CYP2C19: *2, *3, *4,	the cytochrome p450	Molecular
Pharmacogenetics	CYP2C19	*5 (A,B), *6, *7, *8	CYP2C19 gene.	Controls
		CYP2D6: *2A		
		promoter, *2		
		(1661G>C), *2		
		(4180G>C), *2/*17,	Synthetic reference	
		*3 (A,B), *4(A-L), *4	nucleic acids comprising	
		(A-L)/*10 (A,B), *5	17 mutations/variants in	
		deletion, *6 (A-D),	the cytochrome p450	
		*7, *8, *9, *12, *11,	CYP2D6 gene and the *5	Molecular
Pharmacogenetics	CYP2D6	*14, *15, *17, *41	deletion.	Controls
			Intended for in vitro use	
			as a quality control to	
			monitor analytical	
			performance of the	
			Xpert HemosIL® Assay on	
			the GeneXpert® System.	Maine
		Factor II G20210A,	Mutations are	Molecular
	Factor II,	Factor V Leiden	homogenous, wild type	Quality
Thrombosis	Factor V	G1691A	included also.	Controls, Inc.
				Maine
		Factor II G20210A,	Mutations are	Molecular
T l l	Factor II,	Factor V Leiden	heterozygous. Wild type	Quality
Thrombosis	Factor V	G1691A	alleles are also included.	Controls, Inc.
			Mutations are	Maine
		Factor II G20210A,	heterozygous,	Molecular
	Factor II,	Factor V Leiden	homozygous. Wild type	Quality
Thrombosis	Factor V	G1691A	alleles are also included.	Controls, Inc.
			Control to monitor	
			extraction, amplification	
			and detection.	Maine
		Factor II G20210A,	Mutations are	Molecular
	Factor II,	Factor V Leiden	heterozygous,	Quality
Thrombosis	Factor V	G1691A	homozygous. Wild type	Controls, Inc.

Thrombosis	MTHFR	C677T, A1298C	contains: 1) wt MTHFR; 2) heterozygous 677C>T and 1298A>C genotypes; 3) homozygous 677C>T and 1298A>C genotypes (in blood-like matrix)	Maine Molecular Quality Controls, Inc.
Thrombosis		Factor II G20210A, Factor V Leiden G1691A, MTHFR C677T, A1298C	Control to monitor extraction, amplification and detection. Mutations are heterozygous, homozygous. Wild type alleles are also included.	Maine Molecular Quality Controls, Inc.

Product	catalog #
	https://w
	ww.molec
	ularcontro
	ls.com/De
	fault.aspx
AJP Control	?id=1830
	http://m
	mqci.com
INTROL CF	/company
Panel I	.php
	la 44.0 . / /
	http://m
INTROL CF	mqci.com /company
Panel II	.php
	.pp
	http://m
	mqci.com
INTROL CF	/company
Panel III	.php
	http://ww
	w.seracar
	ecatalog.c
	om/Defau
	lt.aspx?ta
Accurun 632	bid=445
	http://ww
	w.seracar
	ecatalog.c om/Defau
	It.aspx?ta
Accurun 644	bid=445
	1.5.5.

Accurun 676	http://ww w.seracar ecatalog.c om/Defau lt.aspx?ta bid=445
INTROL HH Panel I Control	http://m mqci.com /company .php
INTROL HH Panel II Control	http://m mqci.com /company .php
INTROL HH Wild Type Control	http://m mqci.com /company .php
SRM2394	http://ww w.nist.gov /index.ht ml

SRM2393	http://ww w.nist.gov /index.ht ml
SRM 2392	http://ww w.nist.gov /index.ht ml
INTROL PGx 1 Control	http://m mqci.com /company .php
INTROL 2C19 Panel P105	http://m mqci.com /company .php
P450-2C9 VKORC-1 Synthetic Control	https://w ww.molec ularcontro ls.com/De fault.aspx ?id=1832

P450-2C19 Synthetic Control	https://w ww.molec ularcontro ls.com/De fault.aspx ?id=1832
P450-2D6 Synthetic Control	https://w ww.molec ularcontro ls.com/De fault.aspx ?id=1832
Xpert FII & FV NOR/MUT Control	http://m mqci.com /company .php
Xpert FII & FV HET	http://m mqci.com /company .php
Xpert FII & FV Genotype Panel G109	http://m mqci.com /company .php
INTROL TRC Genotype Control	http://m mqci.com /company .php

INTROL MTHFR Genotype Control	http://m mqci.com /company .php
INTROL Thrombosis Genotype Panel	http://m mqci.com /company .php